MTH 221 Linear Algebra Spring 2017, 1-5

-, ID -

Exam one: MTH 221, Spring 2017

Ayman Badawi

QUESTION 1. (3 points) Let A be a 3 × 3 matrix such that $A\begin{bmatrix} 4\\ 3\\ -2 \end{bmatrix} = 5\begin{bmatrix} 16\\ 12\\ -8 \end{bmatrix}$. Now stare. I claim you should see one

eigenvalue of A, say α . What is α ? explain

Solution. By staring, we observe that $A\begin{bmatrix} 4\\3\\-2\end{bmatrix} = 5 \times 4\begin{bmatrix} 4\\3\\-2\end{bmatrix}$. Hence 20 is an eigenvalue of A

QUESTION 2. (10 points) Let A be a 3×3 matrix such that 3, 2 are the eigenvalues of A, where Trace(A) = 8, $E_3 = span\{(1,1,1)\}$ and $E_2 = span\{(0,1,4)\}$.

(i) Is A diagonalizable? if no, then explain. if yes, then find an invertible matrix Q and a diagonal matrix D such that $QDQ^{-1} = A$.

Solution. Note $C_A(\alpha)$ is of degree 3. So it cannot have more than 3 roots. 8 = Trace(A) = 3 + 2 + a. Hence a = 3. Thus 3 is repeated twice but E_3 is a span of one point. Thus A is not diagnolizable,

(ii) Let $B = 3I_3 - A$. Find the solution set to the system of linear equations $B\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$.

Solution. Note that the solution set to the (homogenous) system of the linear equations $B\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$ is

$$Z(B) = N(B) = E_3 = Span\{(1, 1, 1)\}.$$

(iii) Let $B = 5I_3 - A$. Find the solution set to the system of linear equations $B \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

Solution. Since 5 is not an eigenvalue of A, we conclude that the solution set to $Z(B) = Z(5I_3 - A) = \{(0,0,0)\}.$

(iv) Find |A|.

Solution. $|A| = 3 \times 3 \times 2 = 18$.

(v) Find $|A + 2I_3|$

Solution. Eigenvalues of $A + 2I_3$ are (3 + 2) = 5, (3 + 2) = 5, (2 + 2) = 4. Hence $|A + 2I_3| = 5 \times 5 \times 4 = 100$

<u>2</u> QUESTION 3. (4 points) For what values of *a*, *b*, *c* that make the matrix $A = \begin{bmatrix} 3 & a & b \\ 0 & 3 & c \\ 0 & 0 & 3 \end{bmatrix}$ diagnolizable? EXPLAIN.

Solution. $C_A(\alpha) = det(\begin{bmatrix} \alpha - 3 & -a & -b \\ 0 & \alpha - 3 & -c \\ 0 & 0 & \alpha - 3 \end{bmatrix} = (\alpha - 3)^3$. Hence 3 is an eigenvalue of A repeated 3 times. So $E_{3} = Z \begin{pmatrix} \begin{bmatrix} 0 & -a & -b \\ 0 & 0 & -c \\ 0 & 0 & 0 \end{bmatrix} \end{pmatrix}$ must be a span of 3 independent points = number of free variables. Thus the matrix $\begin{bmatrix} 0 & -a & -b \\ 0 & 0 & -c \\ 0 & 0 & 0 \end{bmatrix}$ cannot have a nonzero-row (if it has a nonzero row then we can have a leading variable, and hence

er of free variables will be strictly less than 3). Thus a = b = c = 0.

QUESTION 4. (4 points) Let A be a matrix and
$$(A^T)^{-1} = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 2 & 4 \\ -1 & -2 & 10 \end{bmatrix}$$
. Find the solution set to $A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
Solution: Note that $(A^T)^{-1} = (A^{-1})^T$. **Thus** $A^{-1} = ((A^{-1})^T)^T = ((A^T)^{-1})^T = \begin{bmatrix} 1 & -1 & -1 \\ 2 & 2 & -2 \\ 3 & 4 & 10 \end{bmatrix}$. **Hence**
 $A^{-1}A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ 2 & 2 & -2 \\ 3 & 4 & 10 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. **Thus** $I_3 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 0 \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} + 1 \begin{bmatrix} -1 \\ -2 \\ 10 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 13 \end{bmatrix}$. **Thus the solution**
set = {(0, 0, 13)}.
QUESTION 5. (5 points) Let $A = \begin{bmatrix} 0 & 0 & 1 \\ 2 & -2 & -1 \\ 0 & 1 & 2 \end{bmatrix}$. Find A^{-1} if possible

Solution: $\begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 2 & -2 & -1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2 \to R_2} \xrightarrow{-2R_1 + R_3 \to R_3} \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 2 & -2 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -2 & 0 & 1 \end{bmatrix}$ $\overrightarrow{0.5R_2} \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0.5 & 0.5 & 0 \\ 0 & 1 & 0 & -2 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 + R_2 \to R_2} \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1.5 & 0.5 & 1 \\ 0 & 1 & 0 & -2 & 0 & 1 \end{bmatrix}$ Now stare and make the left hand matrix equals I_3 by interchanging rows only. Hence $A^{-1} = \begin{bmatrix} -1.5 & 0.5 & 1 \\ -2 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.

	a_1	a_2	a_3		$[-2a_7]$	$-2a_{8}$	$-2a_{9}$	
QUESTION 6. Let $A =$	a_4	a_5	a_6	and $B =$	7a4	$7a_{5}$	$7a_{6}$. If $ A = -4$, then
	a_7	a_8	a_9		$5a_4 + a_1$	$5a_5 + a_2$	$5a_6 + a_3$	
a) Find $ B $ (4 points)								

Solution: We start with the given A : $A \quad \overrightarrow{5R_2 + R_1 \rightarrow R_1} \quad C \quad \overrightarrow{R_1 \leftrightarrow R_3} \quad D \quad \overrightarrow{-2R_1, 7R_2} \quad B \text{ is the given B.}$ Hence $|B| = -1 \times -2 \times 7 \times |A| = -1 \times -2 \times 7 \times -4 = -56$

b) Find $|-2A^{-1}|$ (3 points)

Solution: $|-2A^{-1}| = \frac{(-2)^3}{-4} = 2$

QUESTION 7. Given $A = \begin{bmatrix} d & a \\ b & c \end{bmatrix}$ such that a, b are NONZERO INTEGERS and $A^{-1} = A$. a) Find |A|. (3 points)

Solution: Since A^{-1} exists, $|A| \neq 0$. Hence $\frac{1}{|A|} = |A|$. Thus $(|A|)^2 = 1$. Thus |A| = 1 or |A| = -1. Assume |A| = 1. Hence $A^{-1} = \begin{bmatrix} c & -a \\ -b & d \end{bmatrix} = A = \begin{bmatrix} d & a \\ b & c \end{bmatrix}$. Thus -a = a and hence 2a = 0 which implies that a = 0, impossible since a is a population integer (given in the question). Thus $|A| \neq 1$ and hence |A| = -1.

impossible since a is a nonzero integer (given in the question). Thus $|A| \neq 1$ and hence |A| = -1b) Give me one possibility of A.(2 points)

Solution: by (a) |A| = -1. Hence $A^{-1} = \begin{bmatrix} -c & a \\ b & -d \end{bmatrix} = A = \begin{bmatrix} d & a \\ b & c \end{bmatrix}$. Hence c = -d, a, b any nonzero integers such that $|A| = cd - ab = -c^2 - ab = -1$. Choose c = 0, then d = 0. Hence |A| = -ab = -1. So choose a = b = 1 or a = b = -1. So we get $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ or $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ other examples $\begin{bmatrix} -6 & 7 \\ -5 & 6 \end{bmatrix}$, $\begin{bmatrix} -2 & 1 \\ -3 & 2 \end{bmatrix}$

QUESTION 8. (6 points) Find a matrix $A, 2 \times 3$, such that $\begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix} A + A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

Solution:
$$\left(\begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix} + I_2 \right) A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
. **Hence** $\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. **Thus** $\left(\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \right)^{-1} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} A = \left(\begin{bmatrix} 2 & 3 \\ 1 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. **Thus** $I_2 A = A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$

QUESTION 9. (6 points) Find the solution set to the system

$$x_1 + 2x_4 + x_5 = 4$$
$$x_2 + x_3 - x_5 = 8$$
$$-x_1 - x_4 - x_5 = 2$$

Solution: we start with the augmented matrix

 $\begin{bmatrix} 1 & 0 & 0 & 2 & 1 & 4 \\ 0 & 1 & 1 & 0 & -1 & 8 \\ -1 & 0 & 0 & -1 & -1 & 2 \end{bmatrix} \xrightarrow{R_1 + R_3 \to R_3} \begin{bmatrix} 1 & 0 & 0 & 2 & 1 & 4 \\ 0 & 1 & 1 & 0 & -1 & 8 \\ 0 & 0 & 0 & 1 & 0 & 6 \end{bmatrix} \xrightarrow{-2R_3 + R_1 \to R_1} \xrightarrow{R_1} \begin{bmatrix} 1 & 0 & 0 & 2 & 1 & 4 \\ 0 & 1 & 1 & 0 & -1 & 8 \\ 0 & 0 & 0 & 1 & 0 & 6 \end{bmatrix}$ Now read: $x_1 = -8 - x_5, x_2 = 8 - x_3 + x_5, x_4 = 6, x_3$ and $x_5 \in R$. Hence the solution set is $\{(-8 - x_5, 8 - x_3 + x_5, x_3, 6, x_5) \mid x_3, x_5 \in R\}$

QUESTION 10. Let $A = \begin{bmatrix} a & 0 & 0 \\ b & a & -4 \\ c & 1 & a-4 \end{bmatrix}$. Consider the system of linear equations $A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 2a-4 \\ a-2 \end{bmatrix}$ [Note a-2 = a = a = b].

2 + (a - 4)]

a) For what values of a, b, c will the system have infinitely many solutions?(4 points)

Solution: First we show that the system is consistent: (i.e., find a solution). By staring and make use of the hint we observe

 $0\begin{bmatrix}a\\b\\c\end{bmatrix}+2\begin{bmatrix}0\\a\\1\end{bmatrix}+1\begin{bmatrix}0\\-4\\a-4\end{bmatrix}=\begin{bmatrix}0\\2a-4\\a-2\end{bmatrix}.$ Hence (0,2,1) is a solution. Thus the system is consistent. Now in order

to have infinitely many solution we must have |A| = 0. So |A| (using the first row of A) = $a(a^2 - 4a + 4)$. Hence set $a(a^2 - 4a + 4) = 0$, we get a = 0 or a = 2 and $b, c \in R$.

b) Give me one particular solution to the system. (3 points)

Solution: by (a) we have (0, 2, 1) is a solution to the system.

QUESTION 11. Let
$$A = \begin{bmatrix} 1 & -4 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

a) Is A diagnolizable? If yes, then find an invertible matrix Q and a diagonal matrix D such that $QDQ^{-1} = A.(9)$ points)

Solution:
$$C_A(\alpha) = |\alpha I_3 - A| = det \left(\begin{bmatrix} \alpha - 1 & 4 & -8 \\ 0 & \alpha + 1 & 0 \\ 0 & 0 & \alpha + 1 \end{bmatrix} \right) = (\alpha - 1)(\alpha + 1)^2$$
. We set $C_A(\alpha) = (\alpha - 1)(\alpha + 1)^2$.

 $(1)^2 = 0$. Hence $\alpha = 1$, alpha = -1 (repeated twice). $([0 \ 4 \ -8])$

Now
$$E_1 = Z(I_3 - A) = Z\left(\begin{bmatrix} 0 & 4 & -8 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}\right)$$
 (i.e., the solution set to the homogenous system $\begin{bmatrix} 0 & 4 & -8 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$

 $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$). We get $x_2 = 0, x_3 = 0$, and $x_1 \in R$. Hence $E_1 = \{(x_1, 0, 0) \mid x_1 \in R\} = span\{(1, 0, 0)\}.$

$$E_{-1} = Z(-I_3 - A) = \left(\begin{bmatrix} -2 & 4 & -8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right).$$
 We get $x_1 = 2x_2 - 4x_3$, x_2 and $x_3 \in R$. Thus $E_{-1} = \{(2x_2 - 4x_3, x_2, x_3) \mid x_2, x_3 \in R\} = \{x_2(2, 1, 0) + x_3(-4, 0, 1) \mid x_2, x_3 \in R\} = span\{(2, 1, 0), (-4, 0, 1)\}.$

Now 1 is repeated once, E_1 is span of one point, -1 is repeated twice, and E_{-1} is span of two independent points. Thus A is diagnolizable.

Choose
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
. **Hence** $Q = \begin{bmatrix} 1 & 2 & -4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. **Thus** $Q \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} Q^{-1} = A$.

b) Find A^{2018} (3 points)

0

Solution:
$$A^{2018} = Q \begin{bmatrix} 1^{2018} & 0 & 0 \\ 0 & (-1)^{2018} & 0 \\ 0 & 0 & (-1)^{2018} \end{bmatrix} Q^{-1} = Q \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} Q^{-1} = QI_3Q^{-1} = QQ^{-1} = I_3$$

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com