Exam one: MTH 221, Spring 2017

Ayman Badawi

SCORE $=\frac{69}{}$

QUESTION 1. (3 points) Let A be a 3×3 matrix such that $A\left[\begin{array}{c}4 \\ 3 \\ -2\end{array}\right]=5\left[\begin{array}{c}16 \\ 12 \\ -8\end{array}\right]$. Now stare. I claim you should see one eigenvalue of A, say α. What is α ? explain

Solution. By staring, we observe that $A\left[\begin{array}{c}4 \\ 3 \\ -2\end{array}\right]=5 \times 4\left[\begin{array}{c}4 \\ 3 \\ -2\end{array}\right]$. Hence 20 is an eigenvalue of A
QUESTION 2. (10 points) Let A be a 3×3 matrix such that 3,2 are the eiginvalues of A, where $\operatorname{Trace}(A)=8$, $E_{3}=\operatorname{span}\{(1,1,1)\}$ and $E_{2}=\operatorname{span}\{(0,1,4)\}$.
(i) Is A diagnolizable? if no , then explain. if yes, then find an invertible matrix Q and a diagonal matrix D such that $Q D Q^{-1}=A$.
Solution. Note $C_{A}(\alpha)$ is of degree 3. So it cannot have more than $\mathbf{3}$ roots. $8=\operatorname{Trace}(A)=3+2+a$. Hence $a=3$. Thus 3 is repeated twice but E_{3} is a span of one point. Thus A is not diagnolizable,
(ii) Let $B=3 I_{3}-A$. Find the solution set to the system of linear equations $B\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

Solution. Note that the solution set to the (homogenous) system of the linear equations $B\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is $Z(B)=N(B)=E_{3}=\operatorname{Span}\{(1,1,1)\}$.
(iii) Let $B=5 I_{3}-A$. Find the solution set to the system of linear equations $B\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

Solution. Since 5 is not an eigenvalue of A, we conclude that the solution set to $Z(B)=Z\left(5 I_{3}-A\right)=$ $\{(0,0,0)\}$.
(iv) Find $|A|$.

Solution. $|A|=3 \times 3 \times 2=18$.
(v) Find $\left|A+2 I_{3}\right|$

Solution. Eigenvalues of $A+2 I_{3}$ are $(\mathbf{3}+\mathbf{2})=\mathbf{5},(\mathbf{3}+\mathbf{2})=\mathbf{5},(\mathbf{2}+\mathbf{2})=\mathbf{4}$. Hence $\left|A+2 I_{3}\right|=5 \times 5 \times 4=100$

QUESTION 3. (4 points) For what values of a, b, c that make the matrix $A=\left[\begin{array}{lll}3 & a & b \\ 0 & 3 & c \\ 0 & 0 & 3\end{array}\right]$ diagnolizable? EXPLAIN.
Solution. $C_{A}(\alpha)=\operatorname{det}\left(\left[\begin{array}{ccc}\alpha-3 & -a & -b \\ 0 & \alpha-3 & -c \\ 0 & 0 & \alpha-3\end{array}\right]=(\alpha-3)^{3}\right.$. Hence 3 is an eigenvalue of A repeated 3 times. So $E_{3}=Z\left(\left[\begin{array}{ccc}0 & -a & -b \\ 0 & 0 & -c \\ 0 & 0 & 0\end{array}\right]\right)$ must be a span of 3 independent points $=$ number of free variables. Thus the matrix $\left[\begin{array}{ccc}0 & -a & -b \\ 0 & 0 & -c \\ 0 & 0 & 0\end{array}\right]$ cannot have a nonzero-row (if it has a nonzero row then we can have a leading variable, and hence number of free variables will be strictly less than 3). Thus $a=b=c=0$.
QUESTION 4. (4 points) Let A be a matrix and $\left(A^{T}\right)^{-1}=\left[\begin{array}{ccc}1 & 2 & 3 \\ -1 & 2 & 4 \\ -1 & -2 & 10\end{array}\right]$. Find the solution set to $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
Solution: Note that $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$. Thus $A^{-1}=\left(\left(A^{-1}\right)^{T}\right)^{T}=\left(\left(A^{T}\right)^{-1}\right)^{T}=\left[\begin{array}{ccc}1 & -1 & -1 \\ 2 & 2 & -2 \\ 3 & 4 & 10\end{array}\right]$. Hence $A^{-1} A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & -1 \\ 2 & 2 & -2 \\ 3 & 4 & 10\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Thus $I_{3}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=1\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]+0\left[\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right]+1\left[\begin{array}{c}-1 \\ -2 \\ 10\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 13\end{array}\right]$. Thus the solution set $=\{(0,0,13)\}$.
QUESTION 5. (5 points) Let $A=\left[\begin{array}{ccc}0 & 0 & 1 \\ 2 & -2 & -1 \\ 0 & 1 & 2\end{array}\right]$. Find A^{-1} if possible
Solution: $\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 0 & 0 \\ 2 & -2 & -1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1\end{array}\right] \overrightarrow{R_{1}+R_{2} \rightarrow R_{2}}, \overrightarrow{-2 R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 0 & 0 \\ 2 & -2 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -2 & 0 & 1\end{array}\right]$
$\overrightarrow{0.5 R_{2}}\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0.5 & 0.5 & 0 \\ 0 & 1 & 0 & -2 & 0 & 1\end{array}\right] \quad \overrightarrow{R_{3}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccccc}0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & -1.5 & 0.5 & 1 \\ 0 & 1 & 0 & -2 & 0 & 1\end{array}\right]$ Now stare and make the left hand matrix equals I_{3} by interchanging rows only. Hence $A^{-1}=\left[\begin{array}{ccc}-1.5 & 0.5 & 1 \\ -2 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$.

QUESTION 6. Let $A=\left[\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right]$ and $B=\left[\begin{array}{ccc}-2 a_{7} & -2 a_{8} & -2 a_{9} \\ 7 a_{4} & 7 a_{5} & 7 a_{6} \\ 5 a_{4}+a_{1} & 5 a_{5}+a_{2} & 5 a_{6}+a_{3}\end{array}\right]$. If $|A|=-4$, then
a) Find $|B|$ (4 points)

Solution: We start with the given $\mathbf{A}: A \quad \overrightarrow{5 R_{2}+R_{1} \rightarrow R_{1}} C \overrightarrow{R_{1} \leftrightarrow R_{3}} \quad D \overrightarrow{-2 R_{1}, 7 R_{2}} \quad B$ is the given B.
Hence $|B|=-1 \times-2 \times 7 \times|A|=-1 \times-2 \times 7 \times-4=-56$
b) Find $\left|-2 A^{-1}\right|(\mathbf{3}$ points $)$

Solution: $\left|-2 A^{-1}\right|=\frac{(-2)^{3}}{-4}=2$
QUESTION 7. Given $A=\left[\begin{array}{ll}d & a \\ b & c\end{array}\right]$ such that a, b are NONZERO INTEGERS and $A^{-1}=A$.
a) Find $|A|$. ($\mathbf{3}$ points)

Solution: Since A^{-1} exists, $|A| \neq 0$. Hence $\frac{1}{|A|}=|A|$. Thus $(|A|)^{2}=1$. Thus $|A|=1$ or $|A|=-1$. Assume $|A|=1$. Hence $A^{-1}=\left[\begin{array}{cc}c & -a \\ -b & d\end{array}\right]=A=\left[\begin{array}{ll}d & a \\ b & c\end{array}\right]$. Thus $-a=a$ and hence $2 a=0$ which implies that $a=0$, impossible since a is a nonzero integer (given in the question). Thus $|A| \neq 1$ and hence $|A|=-1$
b) Give me one possibility of A. ($\mathbf{2}$ points)

Solution: by (a) $|A|=-1$. Hence $A^{-1}=\left[\begin{array}{cc}-c & a \\ b & -d\end{array}\right]=A=\left[\begin{array}{ll}d & a \\ b & c\end{array}\right]$. Hence $c=-d, a, b$ any nonzero integers such that $|A|=c d-a b=-c^{2}-a b=-1$. Choose $c=0$, then $d=0$. Hence $|A|=-a b=-1$. So choose $a=b=1$ or $a=b=-1$. So we get $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ or $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$ other examples $\left[\begin{array}{ll}-6 & 7 \\ -5 & 6\end{array}\right],\left[\begin{array}{ll}-2 & 1 \\ -3 & 2\end{array}\right]$
QUESTION 8. (6 points) Find a matrix $A, 2 \times 3$, such that $\left[\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right] A+A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$
Solution: $\left(\left[\begin{array}{ll}1 & 3 \\ 1 & 1\end{array}\right]+I_{2}\right) A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$. Hence $\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right] A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$. Thus $\left(\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]\right)^{-1}\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right] A=$ $\left(\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]\right)^{-1}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$. Thus $I_{2} A=A=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 2 & -1 \\ 1 & -1 & 1\end{array}\right]$

QUESTION 9. (6 points) Find the solution set to the system

$$
\begin{gathered}
x_{1}+2 x_{4}+x_{5}=4 \\
x_{2}+x_{3}-x_{5}=8 \\
-x_{1}-x_{4}-x_{5}=2
\end{gathered}
$$

Solution: we start with the augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & 2 & 1 & 4 \\
0 & 1 & 1 & 0 & -1 & 8 \\
-1 & 0 & 0 & -1 & -1 & 2
\end{array}\right] \stackrel{R_{1}+R_{3} \rightarrow R_{3}}{ }\left[\begin{array}{llllll}
1 & 0 & 0 & 2 & 1 & 4 \\
0 & 1 & 1 & 0 & -1 & 8 \\
0 & 0 & 0 & 1 & 0 & 6
\end{array}\right] \quad \xrightarrow{-2 R_{3}+R_{1} \rightarrow R_{1}}} \\
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & -8 \\
0 & 1 & 1 & 0 & -1 & 8 \\
0 & 0 & 0 & 1 & 0 & 6
\end{array}\right] \text { Now read: } x_{1}=-8-x_{5}, x_{2}=8-x_{3}+x_{5}, x_{4}=6, x_{3} \text { and } x_{5} \in R .} \\
& \text { set is }\left\{\left(-8-x_{5}, 8-x_{3}+x_{5}, x_{3}, 6, x_{5}\right) \mid x_{3}, x_{5} \in R\right\}
\end{aligned}
$$

QUESTION 10. Let $A=\left[\begin{array}{ccc}a & 0 & 0 \\ b & a & -4 \\ c & 1 & a-4\end{array}\right]$. Consider the system of linear equations $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ 2 a-4 \\ a-2\end{array}\right]$ [Note $a-2=$ $2+(a-4)]$
a) For what values of a, b, c will the system have infinitely many solutions?(4 points)

Solution: First we show that the system is consistent: (i.e., find a solution). By staring and make use of the hint we observe
$0\left[\begin{array}{l}a \\ b \\ c\end{array}\right]+2\left[\begin{array}{l}0 \\ a \\ 1\end{array}\right]+1\left[\begin{array}{c}0 \\ -4 \\ a-4\end{array}\right]=\left[\begin{array}{c}0 \\ 2 a-4 \\ a-2\end{array}\right]$. Hence $(0,2,1)$ is a solution. Thus the system is consistent. Now in order to have infinitely many solution we must have $|A|=0$. So $|A|$ (using the first row of A) $=a\left(a^{2}-4 a+4\right)$. Hence set $a\left(a^{2}-4 a+4\right)=0$, we get $a=0$ or $a=2$ and $b, c \in R$.
b) Give me one particular solution to the system. (3 points)

Solution: by (a) we have $(0,2,1)$ is a solution to the system.

QUESTION 11. Let $A=\left[\begin{array}{ccc}1 & -4 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$.
a) Is A diagnolizable? If yes, then find an invertible matrix Q and a diagonal matrix D such that $Q D Q^{-1}=A \cdot \mathbf{9}$ points)

Solution: $C_{A}(\alpha)=\left|\alpha I_{3}-A\right|=\operatorname{det}\left(\left[\begin{array}{ccc}\alpha-1 & 4 & -8 \\ 0 & \alpha+1 & 0 \\ 0 & 0 & \alpha+1\end{array}\right]\right)=(\alpha-1)(\alpha+1)^{2}$. We set $C_{A}(\alpha)=(\alpha-1)(\alpha+$ $1)^{2}=0$. Hence $\alpha=1$, alpha $=-1$ (repeated twice).

Now $E_{1}=Z\left(I_{3}-A\right)=Z\left(\left[\begin{array}{ccc}0 & 4 & -8 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\right)$ (i.e., the solution set to the homogenous system $\left[\begin{array}{ccc}0 & 4 & -8 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=$
). We get $x_{2}=0, x_{3}=0$, and $x_{1} \in R$. Hence $E_{1}=\left\{\left(x_{1}, 0,0\right) \mid x_{1} \in R\right\}=\operatorname{span}\{(1,0,0)\}$.
$E_{-1}=Z\left(-I_{3}-A\right)=\left(\left[\begin{array}{ccc}-2 & 4 & -8 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\right)$. We get $x_{1}=2 x_{2}-4 x_{3}, x_{2}$ and $x_{3} \in R$. Thus $E_{-1}=\left\{\left(2 x_{2}-\right.\right.$ $\left.\left.4 x_{3}, x_{2}, x_{3}\right) \mid x_{2}, x_{3} \in R\right\}=\left\{x_{2}(2,1,0)+x_{3}(-4,0,1) \mid x_{2}, x_{3} \in R\right\}=\operatorname{span}\{(2,1,0),(-4,0,1)\}$.

Now 1 is repeated once, E_{1} is span of one point, -1 is repeated twice, and E_{-1} is span of two independent points. Thus A is diagnolizable.

Choose $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$. Hence $Q=\left[\begin{array}{ccc}1 & 2 & -4 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Thus $Q\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right] Q^{-1}=A$.
b) Find A^{2018} ($\mathbf{3}$ points)

Solution: $A^{2018}=Q\left[\begin{array}{ccc}1^{2018} & 0 & 0 \\ 0 & (-1)^{2018} & 0 \\ 0 & 0 & (-1)^{2018}\end{array}\right] Q^{-1}=Q\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] Q^{-1}=Q I_{3} Q^{-1}=Q Q^{-1}=I_{3}$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

